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Abstract

A theoretical study on the dynamic stabilisation of an unstable mechanical structure is performed. The system is

unstable due to negative damping introduced by, for example, a self-excitation of linearised van der Pol type. A minimum

model possessing two degrees of freedom with linear spring and damper elements is considered. Based on the effect of a

parametric anti-resonance such a system may be stabilised by introducing a time-periodic stiffness variation. Optimum

conditions are derived for achieving damping by parametric excitation. All stiffness elements in the system are considered

to be available for stiffness variation. Using the averaging method in combination with Fourier series, general conditions

for full vibration suppression are derived for arbitrary locations and phase relations of the stiffness variations. Analytical

conditions are presented, showing how the maximum gain in stability depends on the amplitude, the phase, the location

and the shape function of the periodic stiffness excitation. It is shown that only four characteristic values determine the

optimum stiffness variation. These analytical predictions are verified by a numerical stability analysis of an example

system. The results can be applied to tune the efficiency of vibration suppression achieved by a periodic variation of one or

more stiffness parameters.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Parametrically excited vibrations represent a dangerous phenomenon in many engineering fields, such as the
vibrations of rotating machinery [1], the roll motion of ships [2], the vibration of gears [3] or the dynamic
stability of elastic structures [4]. A parametric excitation occurs if a physical parameter in the system is varied
periodically in time leading to rheonomic equations of motion. In general, a parametric excitation introduces
parametric resonances that may destabilise the system’s vibration at double or combinational values of the
natural frequencies introducing so-called parametric resonances or parametric instabilities. This effect is
widely examined, see e.g. Refs. [4–12] and the literature cited therein for an overview over the most commonly
used methods to analyse rheonomic systems. A parametric resonance is more dangerous than an ordinary
resonance as it is characterized by exponential growth of the response amplitudes even in the presence of
damping [12]. Investigations so far were focused on those cases, where parametric resonances appeared to be
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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resonant. However, during the last decade an interesting phenomenon has been discovered [13] that a
non-resonant parametric resonance may occur if the system’s parameters are tuned accordingly.

The main objective of this paper is to investigate the phenomenon that partial or even full vibration
suppression of an unstable system can be achieved by interaction with parametric excitation. The system
under consideration is dynamically unstable due to negative damping as commonly observed in the context
of self-excited vibrations, for example, vibrations induced by dry friction [14] or by steady wind flow [15].
It is well known that the vibrations in negatively damped systems can be suppressed by using different
kinds of passively damped spring-mass absorbers, see e.g. Ref. [16]. An interesting semi-active
vibration suppression mechanism is the deliberate interaction with parametric excitation. This idea was first
proposed in monograph [13], where conditions for full vibration suppression have been formulated
mathematically based on Ref. [17] and later, using another approach, in Refs. [18–20]. It was found that
the vibrations of a negatively damped system can be fully cancelled by parametric excitation within a
frequency interval near a parametric combination resonance frequency of n-th order of the summation- or
difference-type

ZðnÞ0 ¼
jO1 � O2j

n
; n ¼ 1; 2; . . . (1)

Herein, frequencies O1 and O2 are the natural frequencies of the system and Z0 is the frequency of the
parametric excitation. If a vibration suppression occurs at the parametric resonance frequency it is called
parametric anti-resonance frequency [21].

In these preliminary works mainly the special case of a time-harmonic stiffness variation of a single stiffness
coefficient has been investigated to achieve vibration suppression of an unstable two-mass system. A first step
towards non-harmonic stiffness functions was investigated numerically in Ref. [22] and analytically in
Ref. [23], where a rectangular stiffness variation is proposed. The variation of more than one stiffness
coefficient, a multi-location parametric stiffness excitation, was examined for systems with special symmetry in
Refs. [19,24,25] and for the most general linear system with two degrees of freedom and arbitrary phase
relations between stiffness excitations can be found in Refs. [26,27].

The current contribution investigates conditions for an optimal configuration of a multi-location parametric
stiffness excitation by employing the analytical results found in Ref. [27] resulting from the averaging method
of first order as presented in Refs. [19,28]. In the following paragraphs, analytical conditions for vibration
suppression are given that enable to determine the optimal non-harmonic shape, location and phase relations
of multiple parametric stiffness excitations. The following analysis will show the interesting result that only
four parameters are needed to determine the optimal shape, location and phase of a parametric stiffness
excitation that maximises the parametric anti-resonance. It should be highlighted that the optimisation
performed is restricted to systems for which the stability boundary curves can be approximated adequately by
a first-order perturbation. Further study is needed if the contribution of a second-order perturbation cannot
be neglected, as for the system in Refs. [18,29].

2. Problem definition

The most general linear two-mass system is analysed possessing linear stiffness and damping coefficients.
The system is shown in Fig. 1 and may represent two modes of a vibrating structure. For an originally
nonlinear system, the coefficients represents linearised expressions around the system’s trivial equilibrium.
Any of the stiffness coefficients is varied periodically with the same frequency Z and the same periodic shape
function gðZtÞ but with different relative phase angles a12 and a02,

k01ðtÞ ¼ k01ð1þ �01gðZtÞÞ,

k12ðtÞ ¼ k12ð1þ �12gðZtþ a12ÞÞ,

k02ðtÞ ¼ k02ð1þ �02gðZtþ a02ÞÞ. (2)

The variation of the stiffness coefficient k01ðtÞ is chosen to be the reference variation. Variables �kl are
amplitude amplification factors of the corresponding stiffness parameters kkl with j�kl jo1. The equations of
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Fig. 2. General time-periodic stiffness variation.

Fig. 1. Mechanical system with multi-location parametric stiffness variation.

F. Dohnal / Journal of Sound and Vibration 320 (2009) 777–792 779
motion can be written as

M €xðtÞ þ C _xðtÞ þ KðtÞxðtÞ ¼ 0, (3)

with the symmetric system matrices

M ¼
m1 0

0 m2

" #
; C ¼

c01 þ c12 �c12

�c12 c12 þ c02

" #
; KðtÞ ¼

k01ðtÞ þ k12ðtÞ �k12ðtÞ

�k12ðtÞ k12ðtÞ þ k02ðtÞ

" #
.

Searching for an optimal shape function gðZtÞ for the stiffness variations kklðtÞ that can be regular functions
or functions with a finite number of finite discontinuities in the interval ½0; 2p�. Additionally, the following side
conditions shall apply, as sketched in Fig. 2:
(i)
 The variation is periodic gð0Þ ¼ gð2p=ZÞ,

(ii)
 has a zero mean value and,

(iii)
 is bounded in between a stiffness bandwidth which is defined as

kklð1� �klÞpkklðtÞpkklð1þ �klÞ. (4)
The first condition is proposed since the quenching effect is only known for periodic variations. The second
side condition guarantees that the mean value of each stiffness excitation kklðtÞ remains unchanged under gðZtÞ

in Eq. (2) to avoid shifts in the natural frequencies O1, O2. The last side condition is a physical requirement to
avoid solutions that result in unbounded stiffness amplitudes. All physically reasonable signals meet these
Dirichlet Fourier series conditions and, consequently, possess a Fourier series associated to its function
representation. Without loss of generality the following study is restricted to Fourier cosine series of the form

gðZtÞ ¼
X1
n¼1

an cos nZt; an ¼
1

p

Z 2p

0

gðtÞ cosðntÞdt. (5)
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By introducing the Fourier series in Eq. (5) the stiffness variations in Eq. (2) become

kklðtÞ ¼ kklð1þ �klgðZtþ aklÞÞ ¼ kkl þ �klkkl

X1
n¼1

anðcos akl cosðnZtÞ � sin akl sinðnZtÞÞ, (6)

with kl ¼ 01; 12; 02 and a01 ¼ 0. Hence, the time-periodic stiffness matrix can be split into a constant part, the
mean value, and two harmonic parts

KðtÞ ¼ K0 þ
X1
n¼1

anðKc cosðnZtÞ þ Ks sinðnZtÞÞ. (7)

A transformation matrix T is introduced

T ¼
1 1

t1 t2

" #
; t1 ¼ 1þ

k01 �m1O2
1

k12
; t2 ¼ 1þ

k01 �m1O2
2

k12
, (8)

where O1 and O2 are the system’s undamped natural frequencies. By applying this transformation the mean
value matrix M�1K0 becomes diagonal,

T�1M�1K0T ¼ X2; �H ¼ T�1M�1CT; �Q ¼ T�1M�1KcT; �P ¼ T�1M�1KsT, (9)

with a scaling factor � and

X ¼
O1 0

0 O2

" #
; H ¼

Y11 Y12

Y21 Y22

" #
; Q ¼

Q11 Q12

Q21 Q22

" #
; P ¼

P11 P12

P21 P22

" #
. (10)

The system is transformed into the modal space of the time-independent system at �kl ¼ 0, its quasi-normal
form

€yðtÞ þ �H_yðtÞ þX2yðtÞ ¼ ��
X1
n¼1

anðQ cosðnZtÞ þ P sinðnZtÞÞyðtÞ. (11)

3. Stability analysis

Closed form solutions of rheonomic differential equations as in Eq. (11) are only known for a few special
cases. Approximate methods are good instruments for gaining deeper insight into mechanical systems where
negative damping and time-periodic coefficients coexist. Among several perturbation methods [30,28], the
application of the averaging method as proposed in Refs. [18,19] has turned out to be straight-forward for
problems as investigated here. From now on the scaling factor � in Eq. (11) is assumed to be sufficiently small
to allow a first-order approximation.

In case of a variation of a single stiffness element only or a synchronous variation of multiple stiffness
elements (a12 ¼ 0 ¼ a02), the condition Pn ¼ 0 holds for the coefficient matrices in Eq. (11). The stability of
such systems is discussed analytically in great detail in Refs. [13,18–20] applying different perturbation
techniques. Introducing phase shifts between single stiffness excitations (a12; a02a0) corresponds to a general
harmonic stiffness variation for which Pna0 in Eq. (11). An analytical stability analysis of this generalised
system can be found in Refs. [26,27] which leads to cumbersome expressions. However, for a system with a
diagonal inertia matrix M as introduced in Eq. (3), the matrix coefficients obey the relation

Q12P21 � P12Q21 ¼ 0 (12)

in which case the stability conditions are similar to the conditions derived for an excitation of a single stiffness
element only.

For a first-order approximation, a small detuning from the parametric excitation frequency Z0 in Eq. (1) of
the following form is introduced

Z ¼ ZðnÞ0 þ �s
ðnÞ. (13)
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Averaging at different frequencies Z0 and applying the Routh–Hurwitz criteria for complex polynomials in
Refs. [31,32] leads to the following summarised stability conditions for Eq. (11) (more details can be found in
Ref. [27] respecting Eq. (12)):
(i)
 In general, if the stiffness variation frequency Z is not close to any of the frequencies in Eq. (1) or the
parametric resonance frequencies 2O1=n or 2O2=n, then the system is stable if and only if

Y1140 and Y2240. (14)

If these conditions hold there is no negative modal damping present in the system and, hence, the system is
stable.
(ii)
 If both conditions in Eq. (14) are not fulfilled then damping by interaction with parametric excitation is
not possible.
(iii)
 If one of the condition in Eq. (14) is not satisfied then the system is unstable but may be stabilised if the
stiffness variation frequency Z is chosen to be close to a parametric anti-resonance frequency in Eq. (1).
In this special case the stability conditions in Eq. (1) are no longer valid and are modified to the following
new set of stability conditions. For the case of s ¼ 0 in Eq. (13), the stiffness variation frequency matches
the parametric anti-resonance frequency exactly, Z ¼ ZðnÞ0 , and the stability conditions are

Y11 þY2240; DðnÞ ¼ Y11Y22 � a2
n

Q12Q21 þ P12P21

4O1O2
40. (15)

For the case of sa0 in Eq. (13), the following conditions hold:

Y11 þY2240;
jO1 � O2j

n
� �sðnÞoZo

jO1 � O2j

n
þ �sðnÞ, (16)

with the stability width

2�sðnÞ ¼
Y11 þY22

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

DðnÞ

Y11Y22

s
, (17)

in analogy to Ref. [27]. Eq. (16) determines the boundary between stable and unstable system parameter
values according to Eq. (13). The additional condition in Eq. (15) is needed to decide which side of the
boundary is stable and which is unstable. Note that the stability conditions Eqs. (15), (16) are equivalent
to the conditions derived in Refs. [13,19,21] for the case of n ¼ 1, ai ¼ 0, bi ¼ 0, akl ¼ 0 but a1 ¼ 1. If the
second condition in Eq. (15) is fulfilled for a certain value of n then the frequency ZðnÞ0 is called a
parametric anti-resonance frequency. The frequency interval of this anti-resonance is 2�sðnÞ as obtained
from Eq. (16). Outside this interval a destabilising negative damping coexists with a destabilising
parametric resonance and, in our linearised model, the amplitudes grow exponentially without restriction.
For the symmetric system matrices as stated in Eq. (3), the upper sign in Eq. (15) corresponds to a
parametric anti-resonance frequency while the lower sign corresponds to a classical parametric resonance
frequency, as outlined in Ref. [13]. The opposite is the case if the parametric excitation matrices Q, P would be
skew-symmetric, see Refs. [21,27]. The stability boundary curves in Eq. (16) determine values of the
parametric excitation frequency Z for which vibration suppression can be achieved. These curves define a
dense frequency interval of Z within which damping by parametric excitation may occur. The strongest
damping is achieved if the value of Z is chosen at the centre Z0 of this interval. The analytical formula induces
that the parametric anti-resonance frequency Z0 for the system in Fig. 1 is exactly equal to a parametric
combination frequency jO1 � O2j/n. However, numerical calculations showed that the real stability boundary
curve is shifted slightly from the analytical prediction [29]. Nevertheless, the width of the numerically obtained
frequency interval is equal to the analytical one and analysing the analytical expressions is as meaningful as
performing numerical analysis in order to optimise a desired system. An advantage of the analytical
calculation is that the analytical expressions allow a direct optimisation while in case of a numerical analysis
the shifted centre of the stable frequency interval has to be calculated separately for each value set of system
parameters.
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4. Optimisation

Previous investigations, e.g. Refs. [33,34], showed that it is advantageous to increase the interval
of vibration suppression sðnÞ for several reasons. First, an increased stability interval in Eq. (16) increases the
robustness of the method, since fluctuations in the system parameters would have less influence on the
performance. Secondly, a wider interval positively affects the transient behaviour during vibrations
suppression. Two aspects in the optimisation of damping by stiffness excitation are considered: (a)
maximising the robustness of the method with respect to changes of the frequency Z and, (b) maximising the
resulting amplification of system damping. Both criteria demand to maximise the stability interval.
The constant parts of the system coefficients are considered to be fixed while the phase angles a12, a02 and
amplitude amplification factors �01, �12, �02 determining the parametric excitations are optimised. A stiffness
variation is considered to be optimal if it maximises the stability width for fixed n,

2�sðnÞ ! max for n ¼ 1; 2; . . . . (18)

Since the stability interval sðnÞ in Eq. (16) is inversely proportional to n in most cases only the leading Fourier
coefficient a1 is decisive.

Of practical importance is the case where one modal damping coefficient is negative:

Y11Y22o0. (19)

Here the conditions in Eq. (14) are no longer met and the negative damping is strong enough to destabilise
the system without parametric excitation. For the system with parametric excitation the coefficient matrices in
Eq. (3) are symmetric and, consequently, the parametric excitation term Q12Q21 þ P12P21 in Eq. (17) is always
positive. Searching for a maximal suppression interval the stability conditions in Eq. (15) needs to be fulfilled.
Inserting the second condition into Eq. (17) and restricting the optimisation to Eq. (19) implicates that sðnÞ is
always real. To maximise a real-valued sðnÞ under the restrictions from above, the parametric excitation term
needs to be maximised. A smooth quality function J is defined proportionally to the non-dimensional
parametric excitation term that follows from Eqs. (8)–(10):

a2
nðQ12Q21 þ P12P21Þ ¼

2k2
01k2

12

ðO2
1 � O2

2Þ
2m3

1m2

a2
nJða12; a02; �01; �12; �02Þ ! max, (20)

which is a function of the phase angles and the amplitude amplification factors. The constant parts of the
system coefficients are considered to be fixed so that Eq. (20) simplifies to

a2
nJða12; a02; �01; �12; �02Þ ! max. (21)

Inserting the matrix entries from Eq. (3) into Eqs. (9) and (21) results in the quality function

J ¼ � ð1� aÞ�01�12 cos a12 � a�01�02 cos a02 þ að1� aÞ�12�02 cosða12 � a02Þ

þ 1
2
�201 þ ð1� aÞ2�212 þ a2�202
� �

, (22)

with the abbreviation

a ¼
m1k02

m2k01
¼

o2

o1

� �2

, (23)

where a defines a frequency ratio. The quality function J possesses the interesting property of being
independent from the coupling stiffness k12 or any damping parameter. Note that Eq. (22) is a dimensionless
energy-based quality function.

4.1. Optimal function shape

The method of suppressing vibrations of a negatively damped system has been studied extensively for the
case of time-harmonic variations of the system parameters. In this section, the efficiency of different time-
periodic, but not necessarily harmonic, variations are examined following Ref. [23]. Maximising the condition



ARTICLE IN PRESS
F. Dohnal / Journal of Sound and Vibration 320 (2009) 777–792 783
in Eq. (21) for fixed phase angles and amplification factors demands maximising the Fourier coefficients janj

and, consequently, adapting the shape function g of the stiffness variations in Eq. (2).
The largest value for the expression in Eq. (21) is found for a specific value n for which the Fourier

coefficient is maximal,

janj ! max. (24)

However, since the stability interval sðnÞ in Eq. (16) is inversely proportional to n in most cases only the leading
Fourier coefficient a1 is decisive for the largest stability interval defined in Eqs. (18), (17). Fourier series and
their leading coefficient for example shapes of g are listed in Table 1. The reference shape is the cosine function
with a leading Fourier coefficient of one, a1 ¼ 1, as investigated in the main literature on damping by
parametric excitation. According to Eq. (21), a harmonic stiffness excitation leads to an amplification factor a2

1

of the quality function J equal to one. Applying a triangular excitation is equivalent to an amplification loss of
34% and for the case of a parabola shape the amplification is as less as 6%. An impulse-like or trapezoid
shape function leads to a gain of up to 61% depending on the parameter j. Consequently, the greatest
enhancement, compared to a stiffness variation of the classical harmonic shape, is achieved for a simple
rectangular shape for n ¼ 1 and j ¼ 0, in which case

a1 ¼
4

p
¼ 1:27. (25)

For a system with two degrees of freedom with time-periodic stiffness parameters kklðtÞ the optimal function is
a simple rectangular shape, also known as an open-loop bang-bang control [35]. Counter-intuitively, impulse-
like shapes, for which the fast dynamics of the signal are concentrated in a very small time interval, are not
optimal. This extraordinary result means that a benefit of 61% can be achieved just by adjusting the shape of
the stiffness variation function but without increasing the peak values kklð1� �klÞ. This optimum is an
analytical verification and generalisation of the extensive numerical studies performed for a bang-bang
controller in Ref. [22] wherein only one stiffness parameter was varied periodically in time.
4.2. Optimal phase angles

In this section, optimal phase relations â12; â02 are derived for arbitrary amplitude amplification factors
�01; �12; �02 and shape functions an. Since the argument of the cosine functions are linear in the parameters
a12; a02, the quality function J is periodic with respect to these phase angles with a period of 2p and symmetric
with respect to 0;p; 2p; . . .. Hence, all possible values of the quality function lie within the domain
½0;p� � ½0; p�. Only positive amplification factors need to be considered because a negative factor is already
accounted for by a phase angle of p. The first derivatives of J in Eq. (22) yield the conditions for extremal
values [36]

qJ

qa12
¼ 0 : ð1� aÞ�12ð�01 sin â12 � a�02 sinðâ12 � â02ÞÞ ¼ 0, (26a)

qJ

qa02
¼ 0 : a�02 �01 sin â02 þ ð1� aÞ�12 sinðâ12 � â02Þð Þ ¼ 0. (26b)

For a; �01; �12; �0240; aa0; 1, the conditions above can be rewritten as

sin â12 � â02ð Þ ¼
1

a

�01
�02

sin â12 ¼ �
1

1� a

�01
�12

sin â02. (27)

To decide whether the quality function is maximised the additional condition

q2J

qða12; a02Þ
¼ að1� aÞ�01�12�02 �ð1� aÞ�12 cos a12 cosða12 � a02Þ½

�a�02 cos a02 cosða12 � a02Þ þ �01 cos a12 cos a02�40 (28)
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Table 1

Fourier coefficients for different periodic function shapes

Shape Fourier coefficients Leading coefficient

Triangle

g(t)

t

1

− 1

am ¼
1

m2

8

p2
a1 ¼ 0:81

m ¼ 2n� 1, n ¼ 1; 2; . . .

Cosine

g(t)

t

1

− 1

an ¼
1; n ¼ 1

0; n41

(
a1 ¼ 1

n ¼ 1; 2; . . .

Parabolah

g(t)

t

1

− 1

am ¼
1

m3

32

p3
a1 ¼ 1:03

m ¼ 2n� 1, n ¼ 1; 2; . . .

Impulse-like

g(t)

t

1

− 1
π
2

3π
2

2 2� �
am ¼

cosmj
m

4

p
a1 ¼ 1:27 cosj

m ¼ 2n� 1, n ¼ 1; 2; . . .
Trapazoid

g(t)

t

1

− 1

� �
am ¼

sinmj
m2j

4

p
a1 ¼ 1:27

sinj
j

m ¼ 2n� 1, n ¼ 1; 2; . . .

F. Dohnal / Journal of Sound and Vibration 320 (2009) 777–792784
has to be satisfied. For positive values of �01; �12; �02a0, the following optimal phase angles âkl are found:

^a02 ¼ p and ^a12 ¼

p for 0oao1;

any value for a ¼ 1;

0 for a41:

8><
>: (29)

The relation on the right hand side of Eq. (27) is similar to the famous Snell’s law [36] that describes light or
other waves passing through a boundary between two different isotropic media. However, contrary to light
waves for which Hamilton’s principle minimises an energy-related action, here the energy-related quality is
maximised. The maximum value of the quality function in Eq. (22), the optimum, is derived by considering the



ARTICLE IN PRESS
F. Dohnal / Journal of Sound and Vibration 320 (2009) 777–792 785
boundedness of the cosine functions in the interval ½�1; 1� and respecting �01; �12; �02X0 and a40

maxfJg ¼ j1� aj�01�12 þ a�01�02 þ aj1� aj�12�02 þ 1
2
�201 þ ð1� aÞ2�212 þ a2�202
� �

¼ 1
2 �01 þ �12j1� aj þ a�02ð Þ

2. (30)

Figs. 3 and 4 show the quality function J as a function of the relative phase angles a12; a02 for fixed
amplitude amplification factors �01; �12; �02. The value ranges for the phase angles are normalised to the interval
½0; 1�. The symmetry of the quality function with respect to 0 and p leads to horizontal tangential planes at the
domain borders. The variation of the amplitude amplification factors �kl in the particular sub-figure respects
the constraint �01 þ �12 þ �02 ¼ 0:6 ¼ const. The amplification factor �01 is chosen to be the reference excitation
and is fixed. Varying these amplification factors, while respecting the constraint condition above, deforms the
resulting shape of the quality function.

Typical shapes of the quality function J for small frequency ratio, ao1, are plotted in Fig. 3. For non-
vanishing amplification factors �kl the optimal phase angles for the maximum value are found at the position
ða12; a02Þ ¼ ðp;pÞ, as derived analytically in Eq. (29), see Figs. 3b and c. If one of the amplification factors �12,
�02 vanishes then the quality function J becomes independent of the corresponding phase angle a12, a02 and the
resulting shape degenerates, see Fig. 3a or d. In both cases the position ðp;pÞ remains optimal. Performing
the linear adaptation of the amplification factors �01; �12; �02 respecting the mentioned constraint reveals that
the shape of the quality function J is transformed from one degenerated shape in Fig. 3a, through the general
shapes in Figs. 3b and c, into the degenerated shape in Fig. 3d. The typical shapes of the quality function J for
large frequency ratio, a ¼ 441, are plotted in Fig. 4. In this case, similar function shapes of the quality
function J as in the case of ao1 are obtained but now the optimal phase angles are located at ðp; 0Þ for general
nonzero amplification factors �12; �02, according to Eq. (29). Note that for non-vanishing amplification factors
�kl the optimal phase angles for the maximum value are found at the position ð0; pÞ or ðp;pÞ, as derived
analytically in Eq. (29). Beside this optimal position the remaining three corner positions of ð0; 0Þ, ð0;pÞ, ðp; 0Þ
and ðp;pÞ represent extremal positions, of which some of them are suboptimal.
Fig. 3. Quality function for a ¼ 0:25ðo1Þ as a function of the phase angles akl at �01 ¼ 0:2 and different values of amplification factors �12,
�02: (a) �12 ¼ 0:4, �02 ¼ 0, (b) �12 ¼ 0:3, �02 ¼ 0:1, (c) �12 ¼ 0:1, �02 ¼ 0:3, and (d) �12 ¼ 0, �02 ¼ 0:4.
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Fig. 4. Same as Fig. 3 but for a ¼ 4ð41Þ.
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The special value a ¼ 1 represents a symmetric arrangement with respect to eigenfrequencies that arise if the
natural frequency of each subsystem coincide, o1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1=m1

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=m2

p
¼ o2, compare to Fig. 1. Due to the

previous results, the optimal value of the quality function is found at least at the phase angles ð0;pÞ and ðp;pÞ.
Evaluating the quality function defined in Eq. (22) at this critical value of a we obtain

Jja¼1 ¼
1
2
ð�201 þ �

2
02Þ � �01�02 cos a02. (31)

The quality function loses its dependency on �12 as well as on a12. Due to the symmetry of J in the variables
�01; �02, a variation of �01 is equivalent to a variation of �02. For fixed amplification factors �kl the resulting
function shape of J simplifies to the shapes similar to Fig. 3d or 4d, since the special cases a ¼ 1 and �12 ¼ 0
coincide, see Eq. (29). For the critical frequency ratio a ¼ 1 the optimal function value of J is found at the
phase angle a02 ¼ p and arbitrary phase angle a12.

For the very special case where all amplification factors are equal, �01 ¼ �12 ¼ �02 ¼ �, the expression for the
quality function in Eq. (21) simplifies and the solutions derived in Eq. (29) yield

Jð0;p; �; �; �Þ ¼ 2a2�2 and Jðp; p; �; �; �Þ ¼ 2�2. (32)

Consequently, the optimal value of J at the global maximum depends on a at high frequency ratios, a41,
while the global maximum remains constant at low frequency ratios, ap1. The optimal distribution of the
amplification factors is investigated in the following paragraph.

4.3. Optimal amplification factors

In a real device for parametric excitation the power supply, in general, is limited by a mechanical or
electrical load, as the maximum force or the maximum current. In this section we are searching for an optimal
distribution of the amplification factors �01; �12; �02 under the constraint condition that the maximum value of
the potential energy is restricted

hð�01; �12; �02Þ ¼ �01k01 þ �12k12 þ �02k02pC (33)
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and �01; �12; �02X0, following Ref. [25]. Since the constraint condition in Eq. (33) does not depend on the phase
angles a12; a02, the optimisation of the phase angles and the amplification factors are decoupled and the phase
angles derived in Eq. (26b) remains optimal. According to the definition in Eq. (22) and respecting the optimal
phase angles found in Eq. (29), the quantity Jðâ12; â02; �01; �12; �02Þ is strictly monotonically increasing with
increasing amplification factors �kl ,

qJ

q�01
¼ �01 þ j1� aj�12 þ a�0240;

qJ

q�12
¼ j1� aj

qJ

q�01
40;

qJ

q�02
¼ a

qJ

q�01
40. (34)

The function h represents a plane which is monotonically increasing in terms of the amplification factors
because the stiffness parameters kkl possess in physical meaningful systems only positive values
(qh=qkkl ¼ kkl40). Consequently, a multi-variable optimisation using the method of Lagrange multipliers
cannot be applied and the optimum values are located without exception at the boundary of the parameter
domain resulting from the constraint h.

At the optimal positions found in Eq. (29) for a40, the quality function Jð�01; �12; �02; a12; a02Þ simplifies to
Jð�01; �12; �02Þ satisfying Eq. (30). The constraint condition in Eq. (33) represents a plane in the parameter
domain �01; �12; �02, which is positioned by using the constant potential C. Since J is strictly monotonically
increasing for increasing amplification factors, the optimum lies on the triangle span by h ¼ C and �klX0.
Substituting one parameter, e.g. �12, by using the constraint condition in Eq. (33) for positive stiffness
parameters k01; k12; k02, and consequently positive system potential C, results in the mapping

Jð�01; �12; �02Þ/Ĵð�01; �02Þ ¼
1

2
�01 þ

C � �01k01 � �02k02

k12
j1� aj þ a�02

� �2

. (35)

Respecting the constraint condition limits the intervals of �kl for fixed positive value of C to ½0;C=kkl �. To find
the global maximum of the quality function J only the values of the mapped function Ĵ at the three parameter
combinations Ĵðmaxð�01Þ; 0Þ, Ĵð0;maxð�02ÞÞ and Ĵð0; 0Þ need to be compared. Note that the expression Ĵð0; 0Þ is
equivalent to Jð0;maxð�12Þ; 0Þ. The optimal amplitude amplification factors at the phase angles Eq. (29) are
found to be one of the following sets of amplification factors:

ðe1; e2; e3Þ ¼ ð�01max; 0; 0Þ; ð0; �12max; 0Þ; ð0; 0; �02maxÞ
� �

, (36)

with the abbreviations ei ¼ ð�01; �12; �02Þ and �kl max ¼ maxð�klÞ ¼ C=kkl . From previous studies [13,33,20]
it is known that, for the systems considered so far, higher amplitudes lead to an increased stability interval in
Eqs. (16), (17). The sets in Eq. (36) prove this dependency in general.

Comparing the values of J at the sets in Eq. (36) decides which of these parameter combinations is optimal.
Introducing the following set of characteristic parameters

R12 ¼
k12

k01
; R02 ¼

k02

k01
; M ¼

m1

m2
, (37)

where MR02 ¼ a, the decisive conditions can be written compactly as

Jðe1Þ_Jðe3Þ : Mw1, (38a)

Jðe3Þ_Jðe2Þ :
MR12

j1� aj
¼

MR12

j1�MR02j
_1, (38b)

Jðe1Þ_Jðe2Þ :
R12

j1� aj
¼

R12

j1�MR02j
_1. (38c)

It is quite remarkable that the position of the global maximum at the boundary is determined by only three
parameters, namely M, R12 and R02 in Eq. (37). The achievable maximum value of the quality function is
determined by

Jopt ¼
1
2
ðmaxf�01 max; j1� aj�12 max; a�02 maxgÞ

2. (39)

Note that the optimal parameter set is independent of any damping parameter, as is the quality function in
Eq. (22) itself. Consequently, whether the negative damping is located parallel to the stiffness that is
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periodically varied or not does not influence the optimal parameter set at all. Furthermore, for �12 ¼ 0 the
optimal parametric excitation is situated at the smaller mass according to the condition in Eq. (38a) and is
independent of the stiffness ratios R12 and R02.

Sometimes only the simplified system with k02 ¼ 0 is considered, see Fig. 1. For vanishing stiffness
parameter k02 the amplification factor �02 does not exist, �02 ¼ 0, and in Eq. (38) only the last condition is
relevant

R12 ¼
k12

k01
_1 for Jðe1Þ_Jðe2Þ. (40)

In the special case for which all stiffness parameters are equal, k01 ¼ k12 ¼ k02 ¼ k, an assumption also
made for the numerical studies performed in Ref. [24], the characteristic parameters simplify to R12 ¼ R02 ¼ 1
and a ¼M. Here, the parameter set e2 can only be suboptimal and the conditions in Eq. (38) simplify to the
single condition in Eq. (38a).
4.4. Summary

In the previous sections, a system with multiple non-harmonic stiffness variations was considered for which
conditions for an optimal configuration were derived analytically by maximising the stability width in Eq. (18)
and, consequently, the weighted quality function in Eq. (21). These conditions reveal how the maximum gain
in stability depends on the amplitude, the phase and the shape function of the periodic stiffness excitation.
Only four characteristic parameters determine the globally optimal stiffness variation: the maximum Fourier
coefficient an in Eq. (24), and the three parameters M;R12;R02 introduced in Eq. (37). The frequency ratio
introduced in Eq. (23) can be rewritten as a ¼MR02.

The objective in Eq. (21) can be met by maximising a specific Fourier coefficient an in Eq. (24) which is, in
general, the leading coefficient a1. For a bounded stiffness variation, the optimum shape is found to be a
rectangle for which the weighting factor in Eq. (21) is increased for n ¼ 1 by 61% according to Eq. (25).
Optimal phase angles a12, a02 and amplification factors �01, �12, �02 for the stiffness variations introduced in
Eq. (2) are found by maximising the quality function in Eq. (22). A single characteristic parameter suffices to
state the optimum configuration for the phase angles in Eq. (29). This condition is independent of the coupling
stiffness k12. Optimal amplification factors are derived for a constraint in the potential energy Eq. (33) that
leads to the three conditions in Eq. (38) using the definitions in Eqs. (36) and (37).
5. Numerical example

In order to examine the analytical results obtained for vibration suppression the dynamic stability of a
specific system is compared at different phase angles and a harmonic stiffness excitation as well as the most
favourable rectangular excitation. For the numerical study the configuration k02 ¼ 0; c02; �02 ¼ 0, in Fig. 1 and
Eq. (2) is examined, which is a system similar to the one investigated in Refs. [13,33] but with an additional
stiffness excitation of k12. Two stiffness coefficients are varied periodically, k01 and k12, with a phase relation
a12 and amplification factors �01 ¼ �12 ¼ �. A flow-induced self-excitation force is assumed to be acting on the
second mass and is modelled by a linearised van der Pol model,

FSE ¼ ðc1 � c0U2Þ _x2, (41)

where U is the velocity of a steady wind flow and c1, c0 are geometric constants [15]. If the flow velocity U is
sufficiently high the overall damping coefficient becomes negative in which case the self-excitation is
destabilising. The following non-dimensional parameter set is used, see Ref. [33] for more details,

m1

m2
¼ 5;

c1 � c0U
2

m1o1
¼ �0:01;

c2

m2o1
¼ 0:14; � ¼ 0:25 and a12 (42)

with o1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k01=m1

p
and o2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k12=m2

p
. For a certain physical system specific values for some of the

dimensional parameters have to be chosen additionally. These conditions satisfy the first condition in
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Eqs. (15), (16) and additionally Eq. (19), so that the system without parametric excitation, � ¼ 0, is
dynamically unstable due to negative damping.

Stability maps for a system with harmonic stiffness excitation are shown in Fig. 5, derived by direct
numerical integration for fixed system parameters of each sample system, see Ref. [37]. Stability is indicated by
a shaded region. For our specific system the dimensionless parameter a introduced in Eq. (23) vanishes and the
optimal phase angle is found in Eq. (29), â12 ¼ 180�. The influence of varying the phase angle a12 from 0�

towards its optimum value 180� is shown in Fig. 5. If both stiffness excitations at k01 and k12 are performed
synchronously, a12 ¼ 0�, then the amplification factor � in Eq. (42) is too small to satisfy the stability condition
in Eq. (15) and damping by parametric excitation is not possible. Increasing the phase relation first enables
and thereafter even increases the effect of damping by parametric excitation near the parametric anti-
resonance frequency in Eq. (1). Furthermore, even the destabilising character of the classical parametric
resonance frequency 2O2 is reduced the closer a12 becomes to â12. As predicted by the analytical analysis, the
maximum stability region for damping by parametric excitation is obtained at â12 in Fig. 5d.

The effect of a rectangular shape function on the stability regions is presented in Fig. 6 for a phase angle of
120� and the optimum value â12. Compared to the corresponding harmonic shape function in Figs. 5c and d,
the anti-resonant stability region is widened. For our specific system the anti-resonance region at optimum
phase angle but harmonic shape function in Fig. 5d is equivalent to a rectangular stiffness excitation at 120� in
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Fig. 5. Stability maps for different values of phase angle a12 at harmonic stiffness excitation: (a) a12 ¼ 0�, (b) a12 ¼ 60�, (c) a12 ¼ 120�, and

(d) a12 ¼ 180� ¼ â12.
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Fig. 6. Stability maps for rectangular shape function: (a) a12 ¼ 120� and (b) a12 ¼ 180� ¼ â12.
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Fig. 7. Time histories at Q ¼ 4:0 for different function shapes of stiffness excitation: (a) cosine stiffness excitation and (b) rectangular

stiffness excitation.
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Fig. 6. The largest stability region near jO1 � O2j is obtained for a rectangular shape function and optimal
phase angle of 180�. Note that the effective amplification factor a1� becomes so large that even an anti-
resonance region near the frequency jO1 � O2j=2 can be examined. Comparing Figs. 5c and d with Fig. 7
reveals that not only the stability regions are enlarged but the instability regions as well.

Finally, time series of the vibration amplitude x1 for a harmonic and a rectangular stiffness excitation at two
different parametric excitation frequencies are compared in Figs. 7a and b. The vibration amplitudes of x2 are
qualitatively similar and are therefore omitted. The positive effect of damping by parametric excitation on the
transient behaviour using different shape functions is highlighted. Near the parametric anti-resonance
frequency Z0 in Eq. (1), the centre of the frequency interval in Eq. (16), the vibrations are suppressed most
efficiently. With increasing distance of Z from Z0 the vibrations are suppressed less effectively and amplitudes
decay slower. At Z ¼ Z0 þ �s the stability boundary is reached and the suppression interval ends. If the
excitation frequency Z is equal to the parametric anti-resonance frequency Zð1Þ0 ¼ jO1 � O2j ¼ 3:74 the



ARTICLE IN PRESS
F. Dohnal / Journal of Sound and Vibration 320 (2009) 777–792 791
vibration can be successfully suppressed. Note that a frequency of Z ¼ 2:74 outside the suppression interval
and close to the resonance frequency O1 results in increasing vibrations due to the destabilising self-excitation.
The comparison of the time histories confirms the analytical predictions that the vibrations are suppressed
faster using a rectangularly shaped stiffness variation.

6. Conclusions

A general linear two-mass is investigated which is unstable due to negative damping and is stabilised by the
interaction with multiple parametric stiffness excitations. From previous studies it is known that a harmonic
variation of a single stiffness coefficient can stabilise an otherwise unstable system. In this paper, a system with
multiple non-harmonic stiffness variations is considered. Analytical conditions are derived for an optimal
configuration to achieve the largest frequency interval for vibration suppression. These conditions found
confirm and generalise former numerical results for a single set of parameters and show how the maximum
gain in stability depends on the amplitude, the phase, the location and the shape function of the periodic
stiffness excitation.

The effectiveness of different periodic shape functions is compared to a rectangular shape function which
turns out to be the most favourable variation since it maximises the leading Fourier coefficient. The optimal
rectangular shape results in a gain of the suppression interval width of 61% compared to a harmonic stiffness
variation. Thereby it is possible to increase the suppression interval only by adjusting the shape, while the
minimum and maximum values of the stiffness variation remain unchanged. The optimal distribution of the
phase angles between multiple stiffness variations depends solely on the frequency ratio of two single-mass
subsystems. Only three conditions are decisive for the optimal distribution of the amplitudes of a multiple
stiffness variation under a constraint in the potential energy. These analytical predictions are verified by a
numerical stability analysis of an example system. With the help of the criteria obtained, we are capable of
optimising a system with general time-harmonic variation of one or more stiffness coefficients with constraint
in potential energy.
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